Case Study 1: Aquatic Agricultural Systems

1. The outcomes are in themselves a peculiar feature. Based on income data for one year (2012), they seemingly make claims about impact. 12 years into the future. The latter two involve household income and nutrition, which are notoriously hard to measure and both claims are double aggregations.

2. Unless we know how many people this aggregation is based on, and how wealth is distributed, the result remains unclear.

3. Who operates and benefits from commercial efforts. Looking into how income generation is distributed across communities and if any external actors are benefiting or controlling local efforts, would give a more nuanced understanding of their ‘success’.

4. Getting big results is easier with a small sample, implying the larger the claim the more tenous it may be (Huff 1957). Sample size is of utmost importance to correctly appreciate these claims, yet it remains unknown. Considering their beneficiaries range from 6 million (direct) to 16 million (indirect) their sample size is likely much lower and a substantial amount of estimation is involved.

5. If we take the notion of poverty as a multi-dimensional concept seriously then we should use a ‘range’ of poverty indicators” (White 1999: 504). Considering the social transformations promised (empowerment, gender equality, and sustainability) AAS ostensibly do. It is therefore odd that their indicators of such change are wholly ambiguous (with the exception of improved diets) and based solely on income. Thus, there is a clear disjuncture between numerical achievements and the social transformations claimed.

Case Study 2: AfricaRice

1. The planned intervention will increase yields to 46.8 tonnes. Compared to the ‘baseline-scenario’, which offers a mere 32.3, a 44.9% increase is promised. Of course 44.9% is better, but this assumes that only one alternative exists and that it is inevitably inferior, effectively closing down discussion.

2. The font used is four times the size of the text, highlighted in colour. Further research could benefit from testing whether such visual presentation facilitates peripheral cognition as it intensifies the reader’s focus on numbers.

3. Nutritional stats make for questionable aggregations, and hunger is averaged across all areas. One could also question if 12% is indeed such a great increase, as 12% of nearly nothing is also nearly nothing. Without a clear baseline the number means little. Furthermore, according to what standard is this result significant?

4. Some food-fruits like grains can be measured more easily as they are harvested at set times. Cassavas, legumes and bananas on the other hand are harvested based on need, i.e. over a season, and is thus not easily quantified (Jenner 2015).

5. As extreme outlier? See 18 for details.

6. Using median (not mean or mode) obscures distribution of land access, failing to capture high and low concentrations of wealth. Mean is used when wanting large numbers and median when wanting smaller, “a trick transparently.” (Heath 2008). It allows crucial questions to be communicated misleadingly, reinforcing the relief narrative.

7. Sharp numbers (e.g. 2, 7, 13) implies exact knowing, gaining a higher level of believability and confidence. Schindler & Yalch (2006) found that stating “our alumni earn between 43,000 and 57,000 a year” was more believable than “they are well paid,” “earning around 50,000,” or “earning between 40,000 and 60,000.” Similarly, if you were asked to count people in a room and there were 100, you would probably say “exactly 100” as to not be misconstrued as inaccurate (Delhame 1997).

8. Through narrative policy analysis I understand the role of success stories as strengthening the evidence-base vis-a-vis competing alternatives by seemingly limiting uncertainty, complexity and ambiguity (1994). This way, the case put forth seems less complicated to policy-makers, and thus more doable and less likely to fail.

9. Such “success-making” allows individuals and organisations to justify calls for additional financial resources (Sunberg et al 2012).

10. Quantification lies at the heart of robustification because it can convey evidence in a manner that increases the chance of it being accepted. Not only does it simplify and depoliticise (Porter 1994), but it induces so-called peripheral cognition.

11. Peripheral cognition implies that our brain is generally programmed to rely on the credibility of the source when presented with numbers due to inadequate numeracy levels (Yalch & Elmore-Yalch 1984). In a way, fact-checking is “outsourced” to the communicator. Numeracy should not, however, be equated with intelligence, and we are more susceptible to it than most would care to admit (Rayno 2007).

12. This is problematic because it enhances confidence in an approach by ignoring, instead of constructively engaging with, uncertainties and contestations.

13. My hypothesis is that quantification, as a tool of success stories, often ends up obscuring the disjuncture between sector-wide claims of impact, and the results from the small-scale agronomic trials on which they are based.

14. I use pro-poor agriculture as an example because it relies on seemingly simple measurable indicators and outcomes, but which on closer inspection reveal a host of uncertainties, ambiguities and complexities

15. Through this process, a higher level of certainty is projected which would otherwise not be achieved. It allows crucial questions to be left unanswered.

16. Validation: Agriculture may be a field that is easily quantified (yields, income and reach) but that does not mean such quantification always provides meaningful measures or that measures are actually obtainable. The scientific certainty derived from an apparently carefully calculated number might also strengthen the indicator itself, sheltering it from scrutiny.

17. Standardisation: Following from this we can theorise a process of standardization in which the importance of these indicators are ‘normalized’. Internalised by practitioners, communications intermediaries, and beneficiaries, a particular understanding is consolidated, leading to what Porter (1995) calls mechanical objectivity, where practice is consolidated to the point where its underlying assumptions becomes beyond everyday scrutiny.

18. Self-reinforcement: The result is a self-reinforcing mechanism where the telling of success-stories refills certain statistics while the use of statistics makes such stories easier to tell.

Implications

Scrupularity reduced: Although audiences are not oblivious to the shortcomings of quantification, potential obfuscating tendencies can potentially be ignored as peripheral cognition lowers scrutiny.

Simplification: Through the use of these numerical indicators an overly simplistic notion of development, and what constitutes success, is projected.

Depoliticisation: Numbers have a unique way of making the intangible (e.g. empowerment) tangible (e.g. income), and as the latter is open to empiricist measurement, it is gaining greater acceptability. Through this process, a higher level of certainty is projected which would otherwise not be achieved. It allows crucial questions to be left unanswered.

Validation: Agriculture may be a field that is easily quantified (yields, income and reach) but that does not mean such quantification always provides meaningful measures or that measures are actually obtainable. The scientific certainty derived from an apparently carefully calculated number might also strengthen the indicator itself, sheltering it from scrutiny.

Standardisation: Following from this we can theorise a process of standardization in which the importance of these indicators are ‘normalized’. Internalised by practitioners, communications intermediaries, and beneficiaries, a particular understanding is consolidated, leading to what Porter (1995) calls mechanical objectivity, where practice is consolidated to the point where its underlying assumptions becomes beyond everyday scrutiny.

Self-reinforcement: The result is a self-reinforcing mechanism where the telling of success-stories refills certain statistics while the use of statistics makes such stories easier to tell.

Further Research

- What does use of colour, font sizes and other graphical techniques facilitate in peripheral cognition?
- Beyond peripheral cognition, to what extent is scrutiny reduced by summarisations of poverty indicators” (White 1999: 504). Considering the social transformations promised (empowerment, gender equality, and sustainability) AAS ostensibly do. It is therefore odd that their indicators of such change are wholly ambiguous (with the exception of improved diets) and based solely on income. Thus, there is a clear disjuncture between numerical achievements and the social transformations claimed.
- Do more credible actors publish more success stories?
- How and why can success stories be used as a reinforcing mechanism for policy and practice?
- To what extent are success-stories used to obscure or simplify complex social phenomena? How do they influence policy-making?
- What is the role of success stories in promoting or obscuring certain narratives or discourses? How do they affect political decision-making and why?
- To what extent does ‘success’ mean the achievement of a particular agenda or is it more about the wider social impact of a project or programme? How do these different interpretations affect the way success stories are told and used?