Intensification and extensification in mixed farming systems of southern Mali

What is the solution space for agronomy?

Mary Ollenburger
Wageningen University
Agronomy: What is it good for?

• To feed 9 billion people!
• To end poverty!
Agronomy: What is it good for?

Can we actually do that?
Are we really trying?
Is it possible to do both at once?
Africa’s Sleeping Giant

- Increasing production
- Driving growth
- Reducing poverty

- Commercial
 - Brazil’s Cerrado
- Smallholder-based
 - Northern Thailand

Source: IFPRI.
Case Study: Bougouni, Mali

- Population density:
 - 26 people/sq. km.
- High potential
 - Maize Yw 12-16 T/ha (GYGA)
 - 1200 mm rainfall/yr
Crop allocation and cultivated area

- **Household size**
- **Number of people**
- **Crops**
 - Cotton
 - Maize
 - Groundnut
 - Rice
 - Other

Crop area (ha)

- **Household size**
- **Land cultivated (ha)**

Farms

<table>
<thead>
<tr>
<th>Household size (number of people)</th>
<th>Crop area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Farms

- **Crop area (ha)**
- **Household size**
- **Land cultivated (ha)**

- **Crops**
 - Cotton
 - Maize
 - Groundnut
 - Rice
 - Other
Exploring a solution space with simple scenarios

- Many scenarios, using limited data, to quickly explore options
- Input data:
 - Household survey at district level for yields, input costs (AfricaRISING baselines), market survey for crop prices
 - Rapid characterization of population of 109 farm households in 3 villages (crop areas, livestock and equipment)
 - Trial data estimating potential yields
Scenarios with current crop allocation

- Baseline: 50th percentile yields
- Yield gap reduction:
 - 90th percentile yields
 - Potential yields
Optimization Scenarios

Maximize gross margins by re-allocating crop areas subject to constraints:

- Meet household calorie requirements with staple grains
- Maize area < twice cotton area (fertilizer availability constraint)
- Total cropped area constrained to current area (or a factor thereof)

1. With 50th, 90th percentile yields
2. With experimental potential yields
3. Allowing 50% land area expansion
Parameters

<table>
<thead>
<tr>
<th>Crop</th>
<th>At 50th percentile yields</th>
<th></th>
<th>At 90th percentile yields</th>
<th></th>
<th>At potential yields</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yield (kg/ha)</td>
<td>Gross margin (USD/ha)</td>
<td>Yield (kg/ha)</td>
<td>Gross margin (USD/ha)</td>
<td>Yield (kg/ha)</td>
<td>Gross margin (USD/ha)</td>
</tr>
<tr>
<td>Cotton</td>
<td>900</td>
<td>287</td>
<td>1587</td>
<td>550</td>
<td>3000</td>
<td>1130</td>
</tr>
<tr>
<td>Groundnut</td>
<td>486</td>
<td>290</td>
<td>1020</td>
<td>571</td>
<td>2000</td>
<td>820</td>
</tr>
<tr>
<td>Maize</td>
<td>1600</td>
<td>164</td>
<td>2533</td>
<td>279</td>
<td>5000</td>
<td>630</td>
</tr>
<tr>
<td>Rice</td>
<td>800</td>
<td>190</td>
<td>2400</td>
<td>570</td>
<td>2400</td>
<td>570</td>
</tr>
<tr>
<td>Sorghum</td>
<td>500</td>
<td>107</td>
<td>1050</td>
<td>210</td>
<td>3000</td>
<td>530</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sorghum (fodder)</td>
<td>600 (2500)</td>
<td>Cowpea (fodder)</td>
<td>580</td>
</tr>
</tbody>
</table>
Results: Crop Area

Baseline

Optimization at 50th percentile yield

Optimization at 90th percentile yield

Optimization at potential yield

Crop area (ha)

Farms

Crops
- Cotton
- Maize
- Groundnut
- Sorghum
- Rice
- Other
Results: Food Self-sufficiency

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Number (percentage) of households below 80% food self-sufficiency from staple grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>50th percentile</td>
<td>10 (9%)</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Potential</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Optimized 50th percentile</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Optimized 90th percentile</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Optimized potential</td>
<td>1 (1%)</td>
</tr>
</tbody>
</table>
Results: Gross Margins

- Gross margin from crops (USD) per active household member

- Optimized 50%
- Optimized 90%
- Potential
- Optimized Potential

- $1.25/person/day poverty level
- $1225 mean yearly income from gold mining
Results: Gross Margins

Gross margin from crops (USD) per active household member

- $1.25/person/day poverty level
- $1225 mean yearly income from gold mining
This system is not designed to be profitable

- Result of intersecting priorities:
 - Malian state:
 - National food self-sufficiency
 - Cotton for export
 - Farmers:
 - Family food self-sufficiency
 - Income is secondary
 - Donors:
 - “Sustainable intensification”
What about saving the world?

• Local food self sufficiency
 • Integrate nutrition for impact
• Feeding 9 billion people
 • hard to generate needed surpluses because…
What about saving the world?

- Small-scale staple grain farming is not very profitable
- Thriving ag sector can have knock-on effects, but only if the context is right
What about saving the world?

- Tailor options to context
- Cross-disciplinary approaches
- Honesty about what is actually possible
Thank You

IFPRI ARBES team
Ousmane Sanogo, Institut d’Economie Rurale
Mouvement Biologique Malienne
ICRISAT Technicians
The McKnight Foundation

Africa Research in Sustainable Intensification for the Next Generation
africa-rising.net